Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.167
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 34(1): 83-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799380

RESUMO

Bamboo nodes play a key role in the hollow structure and the rapid growth of bamboo culm. Studying on the anatomical structure of bamboo is helpful to understand its growth mechanism. Taking the noninvasive, high-resolution and accurate technical advantages of magnetic resonance imaging (MRI), we conducted cross-sectional high-resolution MRI scanning on the tip of young Moso bamboo culm (removed shoot sheath) and extracted the gray value of the MRIs by using MATLAB software to explore the differences of water distribution in nodes, proximal nodes, and internodes. The results showed that numerous vascular bundles were repeatedly twisted and rotated horizontally at the nodal diaphragms and inner wall near the nodal diaphragms of the young bamboo, forming an intricate and highly connected network. The structure protected important tissues from mechanical stress by allocating axial loads, and enabled to laterally transport water and nutrients, which was an important basis for the rapid growth of Moso bamboo in relatively short term. The signal value (also known as brightness value) of MRIs indicated that water content of vascular bundles in young bamboo culm was much higher than that of surrounding parenchyma tissues. The mean value and standard deviation of water content between pixels of internodes were significantly higher than that of nodes, and the values of that in the proximal nodes were intermediate. The development of MRI would play a significant role in the studies of bamboo anatomy, physiology, and biochemistry.


Assuntos
Imageamento por Ressonância Magnética , Poaceae , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento
2.
Plant Cell Rep ; 42(2): 287-296, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528704

RESUMO

KEY MESSAGE: Auxin accumulation upregulates the expression of APETALA1 (CmAP1) and subsequently activates inflorescence primordium development in axillary buds of chestnut. The architecture of fruiting branches is a key determinant of chestnut yield. Normally, axillary buds at the top of mother fruiting branches develop into flowering shoots and bear fruits, and the lower axillary buds develop into vegetative shoots. Decapitation of the upper axillary buds induces the lower buds to develop into flowering shoots. How decapitation modulates the tradeoff between vegetative and reproductive development is unclear. We detected inflorescence primordia within both upper and lower axillary buds on mother fruiting branches. The level of the phytohormones 3-indoleacetic acid (IAA) and trans-zeatin (tZ) increased in the lower axillary buds in response to decapitation. Exogenous application of the synthetic analogues 1-naphthylacetic acid (NAA) or 6-benzyladenine (6-BA) blocked or promoted, respectively, the development of the inflorescence primordia in axillary buds. The transcript levels of the floral identity gene CmAP1 increased in axillary buds following decapitation. An auxin response element TGA-box is present in the CmAP1 promoter and influenced the CmAP1 promoter-driven expression of ß-glucuronidase (GUS) in floral organs in Arabidopsis, suggesting that CmAP1 is induced by auxin. We propose that decapitation releases axillary bud outgrowth from inhibition caused by apical dominance. During this process, decapitation-induced accumulation of auxin induces CmAP1 expression, subsequently promoting the reproductive development of axillary buds.


Assuntos
Fagaceae , Reguladores de Crescimento de Plantas , Brotos de Planta , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Fagaceae/crescimento & desenvolvimento
3.
Plant Signal Behav ; 17(1): 2050095, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35362363

RESUMO

WUSCHEL-RELATED HOMEOBOX 5 (WOX5) is a member of the WUSCHEL (WUS) homeodomain transcription factor family. WOX5 is expressed mainly in the quiescent center (QC) and confers stem cell identity in the root apical meristem (RAM). Consistent with the role of WUS in repressing root meristem development, we found that ectopic expression of WOX5 disrupted shoot development by repressing shoot-related genes, such as YABBY1 (YAB1). Our findings suggest that WOX5 and WUS potentially confer different tissue identities and specify RAM and SAM, respectively.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Homeodomínio/genética , Meristema/genética
4.
Science ; 375(6584): eabf4368, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239373

RESUMO

Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.


Assuntos
Genes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , RNA-Seq , Análise de Célula Única , Transcrição Gênica
5.
Sci Rep ; 12(1): 1881, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115606

RESUMO

Employing of advanced statistical methods to quantify agricultural information has helped to carry out targeted planning to alleviate the problems of farmers, researchers and policy section. One of these exploratory methods, is multivariate statistical analysis that examines and models the relationship between variables. Considering the importance of Echium amoenum and its use growing trend in traditional medicine and the pharmaceutical industry, also the lack of information on the correlations between its yield and morpho physiological traits, the objective of this study was to determine the causality path in which the Echium amoenum characteristics affects the yield of Echium amoenum as regards of application of organic and chemical fertilizers under different plant densities. The employed method revealed that organic fertilizers increased flower yield compared with the control. The flower yield as a result of application of compost, vermicompost and cattle manure were increased by 25, 28, and 27% compared with the control, respectively. The results of multiple regression showed that variables of plant height, shoot dry weight, flower number per plant were the main factors affected the flower yield. The relative contribution of shoot dry weight was 16 and 25% more than plant height and flower number per plant, respectively. Causality analysis identified that shoot dry weight per plant had indirect effect on flower yield in different paths, as mainly was imposed through plant height considering the path coefficients. This study suggests that optimum production of Echium amoenum with application of ecological inputs along with effective agronomical managements of the causal paths of flower yield forming, including increase in shoot yield and plant height could be achieved through an ecological cropping system with reduced costs and no health concerning due to agrochemicals residual.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Echium/crescimento & desenvolvimento , Fertilizantes , Flores/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Compostagem , Esterco , Modelos Estatísticos , Análise Multivariada , Densidade Demográfica
6.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163510

RESUMO

In order to separate transformed cells from non-transformed cells, antibiotic selectable marker genes are usually utilized in genetic transformation. After obtaining transgenic plants, it is often necessary to remove the marker gene from the plant genome in order to avoid regulatory issues. However, many marker-free systems are time-consuming and labor-intensive. Homology-directed repair (HDR) is a process of homologous recombination using homologous arms for efficient and precise repair of DNA double-strand breaks (DSBs). The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system is a powerful genome editing tool that can efficiently cause DSBs. Here, we isolated a rice promoter (Pssi) of a gene that highly expressed in stem, shoot tip and inflorescence, and established a high-efficiency sequence-excision strategy by using this Pssi to drive CRISPR/Cas9-mediated HDR for marker free (PssiCHMF). In our study, PssiCHMF-induced marker gene deletion was detected in 73.3% of T0 plants and 83.2% of T1 plants. A high proportion (55.6%) of homozygous marker-excised plants were obtained in T1 progeny. The recombinant GUS reporter-aided analysis and its sequencing of the recombinant products showed precise deletion and repair mediated by the PssiCHMF method. In conclusion, our CRISPR/Cas9-mediated HDR auto-excision method provides a time-saving and efficient strategy for removing the marker genes from transgenic plants.


Assuntos
Edição de Genes/métodos , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas , Embaralhamento de DNA , Flores/genética , Flores/crescimento & desenvolvimento , Recombinação Homóloga , Oryza/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento
7.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163530

RESUMO

Harvested water bamboo shoots can be stored for only a few days before they lose weight and become soft. Nitrogen oxide (NO) and modified atmosphere packaging (MAP) have previously been used to prolong horticultural crop storage. In the present study, we analyzed the joint effect of these two methods on extending the postharvest quality of water bamboo shoots. Water bamboo shoots were treated with (1) 30 µL L-1 NO, (2) MAP, and (3) a combination of NO and MAP. The NO treatment delayed the softness and weight loss through maintaining the integrity of the mitochondrial ultrastructure and enhancing the ATP level by activating the expressions and activities of succinic dehydrogenase, malic acid dehydrogenase, and cytochrome oxidase. MAP improved the effect of NO on the mitochondrial energy metabolism. These results indicate that NO and MAP treatments are effective at suppressing the quality deterioration of water bamboo shoots, MAP improves the effect of NO in extending postharvest life, and NO may be the main effective factor in the combination of NO and MAP.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/farmacologia , Poaceae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Succinato Desidrogenase/metabolismo
8.
Gene ; 818: 146214, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066064

RESUMO

Branch number is an important trait in grafted apple breeding and cultivation. To provide new information on molecular mechanisms of apple branching, whole reduced-representation genomes and transcriptome of a wild-type (WT) apple (Malus spectabilis) and its more-branching (MB) mutant at the branching stage were examined in this study. Comparison of WT and MB genomes against the Malus domestica reference genome identified 14,908,939 single nucleotide polymorphisms (SNPs) and 173,315 insertions and deletions (InDels) in WT and 1,483,221 SNPs and 1,725,977 InDels in MB. Analysis of the genetic variation between MB and WT revealed 1,048,575 SNPs and 37,327 InDels. Among them, 24,303 SNPs and 891 InDels mapped to coding regions of 5,072 and 596 genes, respectively. GO and KEGG functional annotation of 3,846 and 944 genes, respectively, identified 32 variant genes related to plant hormone signal transduction that were involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, and brassinosteroid pathways. The transcriptome pathways of plant hormone signal transduction and zeatin biosynthesis were also significantly enriched during MB branching. Furthermore, transcriptome data suggested the regulatory roles of auxin signaling, increase of cytokinin and genes of cytokinin synthesis and signaling, and the suppressed abscisic acid signaling. Our findings suggest that branching development in apple is regulated by plant hormone signal transduction.


Assuntos
Genoma de Planta , Malus/genética , Mutação/genética , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais , Transcriptoma/genética , Sequenciamento Completo do Genoma , Cromossomos de Plantas/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Mutação INDEL/genética , Modelos Biológicos , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA-Seq
9.
Genes (Basel) ; 13(1)2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35052496

RESUMO

Drought, ultraviolet-B (UV-B), and nitrogen stress are significant constraints for sweetpotato productivity. Their impact on plant growth and development can be acute, resulting in low productivity. Identifying phenotypes that govern stress tolerance in sweetpotatoes is highly desirable to develop elite cultivars with better yield. Ten sweetpotato cultivars were grown under nonstress (100% replacement of evapotranspiration (ET)), drought-stress (50% replacement of ET), UV-B (10 kJ), and low-nitrogen (20% LN) conditions. Various shoot and root morphological, physiological, and gas-exchange traits were measured at the early stage of the crop growth to assess its performance and association with the storage root number. All three stress factors caused significant changes in the physiological and root- and shoot-related traits. Drought stress reduced most shoot developmental traits (29%) to maintain root growth. UV-B stress increased the accumulation of plant pigments and decreased the photosynthetic rate. Low-nitrogen treatment decreased shoot growth (11%) and increased the root traits (18%). The highly stable and productive cultivars under all four treatments were identified using multitrait stability index analysis and weighted average of absolute scores (WAASB) analyses. Further, based on the total stress response indices, 'Evangeline', 'O'Henry', and 'Beauregard B-14' were identified as vigorous under drought; 'Evangeline', 'Orleans', and 'Covington' under UV-B; and 'Bonita', 'Orleans', and 'Beauregard B-14' cultivars showed greater tolerance to low nitrogen. The cultivars 'Vardaman' and 'NC05-198' recorded a low tolerance index across stress treatments. This information could help determine which plant phenotypes are desirable under stress treatment for better productivity. The cultivars identified as tolerant, sensitive, and well-adapted within and across stress treatments can be used as source materials for abiotic stress tolerance breeding programs.


Assuntos
Secas , Ipomoea batatas/crescimento & desenvolvimento , Nitrogênio/deficiência , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Estresse Fisiológico , Raios Ultravioleta/efeitos adversos , Adaptação Fisiológica , Ipomoea batatas/metabolismo , Ipomoea batatas/efeitos da radiação , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , Estações do Ano
10.
Plant Physiol ; 188(3): 1586-1603, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919723

RESUMO

Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis (Arabidopsis thaliana) has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem elongates with the top leaf primordia developing into cauline leaves. Meristems in Arabidopsis initiate in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three Arabidopsis ecotypes and several Arabidopsis mutants with varied shoot architectures. Our results showed no negative correlation between cauline and rosette branch numbers in Arabidopsis, demonstrating that there is no tradeoff between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and Arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number of rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity, and temperature. Our data reveal different levels of plasticity in the regulation of branching at rosette and cauline nodes, and promote a framework for future branching analyses.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Ecótipo , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Meristema/anatomia & histologia , Meristema/genética , Fenótipo , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética
11.
Plant Cell Environ ; 45(1): 133-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719799

RESUMO

The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Consumo de Oxigênio , Brotos de Planta/crescimento & desenvolvimento , Aclimatação/fisiologia , Arabidopsis/fisiologia , Ecótipo , Transporte de Elétrons/fisiologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Temperatura
12.
Gene ; 809: 146030, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673213

RESUMO

The shoot apex is a region where new cells are produced and elongate. The developmental state of the wheat shoot apex under low temperature affects its cold resistance. In this study, the morphology of shoot apex before overwintering was characterized for 24 wheat line with different winter and spring characteristics. Our research showed that the shoot apex of autumn-sown spring wheat lines reached the temperature sensitive double-ridge stage before overwintering, whereas shoot apex of winter wheat lines are found in temperature-insensitive vegetative or elongation stages. In order to explore how gene expression is associated with shoot apex differentiation in winter and spring wheat, we used strand-specific RNA sequencing to profile the gene expression patterns at four time-points between 14 after germination and 45 days after germination in the winter wheat cultivar Dongnongdongmai No. 1 (DM1) and in the spring wheat cultivar China Spring (CS). We identified 11,848 differentially expressed genes between the two cultivars. Most up-regulated genes in CS were involved in energy metabolism and transport during the seedling stage, whereas up-regulated genes in DM1 were involved in protein and DNA synthesis. MADS-box genes affect plant growth and development. In this study, MADS-boxes with differential expression between CS and DM1 were screened and evolutionary tree analysis was conducted. During all sampling periods, CS highly expressed MADS-box genes that induce flowering promotion genes such as VRN1, VRT and AG, while lowly expressed MADS-box genes that induce flowering-inhibiting homologous genes such as SVP. TaVRN1 composition in DM1 and CS was vrn-A1, vrn-B1, and Vrn-D1b. Analysis of the sequence of TaVRN1 (TraesCS5A01G391700) from DM1 and CS revealed 5 SNP differences in the promoter regions and 3 SNP deletions in the intron regions. The expression levels of cold resistant genes in DM1 were significantly higher than those in CS at seedling stage (neither DM1 nor CS experienced cold in this study), including CBF, cold induced protein,acid desaturase and proline rich proteins. Additionally, the expression levels of auxin-related genes were significantly higher in CS than those in DM1 at 45 days after germination. Our study identified candidate genes associated with the process of differentiation of the shoot apex in winter and spring wheat at the seedling stage and also raised an internal stress tolerance model for winter wheat to endogenously anticipate the coming stressful conditions in winter.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Filogenia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Plântula/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética
13.
Plant Physiol ; 188(1): 220-240, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34730814

RESUMO

Stunted growth in saline conditions is a signature phenotype of the Arabidopsis SALT OVERLY SENSITIVE mutants (sos1-5) affected in pathways regulating the salt stress response. One of the mutants isolated, sos4, encodes a kinase that phosphorylates pyridoxal (PL), a B6 vitamer, forming the important coenzyme pyridoxal 5'-phosphate (PLP). Here, we show that sos4-1 and more recently isolated alleles are deficient in phosphorylated B6 vitamers including PLP. This deficit is concomitant with a lowered PL level. Ionomic profiling of plants under standard laboratory conditions (without salt stress) reveals that sos4 mutants are perturbed in mineral nutrient homeostasis, with a hyperaccumulation of transition metal micronutrients particularly in the root, accounting for stress sensitivity. This is coincident with the accumulation of reactive oxygen species, as well as enhanced lignification and suberization of the endodermis, although the Casparian strip is intact and functional. Further, micrografting shows that SOS4 activity in the shoot is necessary for proper root development. Growth under very low light alleviates the impairments, including salt sensitivity, suggesting that SOS4 is important for developmental processes under moderate light intensities. Our study provides a basis for the integration of SOS4 derived B6 vitamers into plant health and fitness.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Organogênese Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Raízes de Plantas/genética , Brotos de Planta/genética
14.
Mol Plant ; 15(1): 125-137, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34896639

RESUMO

Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.


Assuntos
Gravitropismo/genética , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas
15.
Sci Rep ; 11(1): 23628, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880352

RESUMO

The use of artificial light sources such as light-emitting diodes (LEDs) has become a prerequisite in tissue culture studies to obtain morphogenetic enhancements on in vitro plants. This technology is essential for developmental enhancements in the growing plant cultures due to its light quality and intensity greatly influencing the in vitro growing explants at a cellular level. The current study investigates the effects of different light-emitting diode (LED) spectra on the growth of apical buds of Ficus carica var. Black Jack. Ficus carica, commonly known as figs is rich in vitamins, minerals, and phytochemicals capable of treating microbial infections and gastric, inflammatory, and cardiac disorders. Apical buds of Ficus carica var. Black Jack, presented morphogenetic changes when grown under six different LED spectra. The highest multiple shoots (1.80 per growing explant) and healthy growing cultures were observed under the blue + red LED spectrum. Wound-induced callus formation was observed on apical buds grown under green LED spectrum and discolouration of the growing shoots were observed on the cultures grown under far-red LED spectrum. Multiple shoots obtained from the blue + red LED treatment were rooted using 8 µM indole-3-acetic acid (IAA), and the rooted plantlets were successfully acclimatised. Compared with the other monochromatic LEDs, blue + red proved to be significantly better for producing excellent plant morphogeny. It is apparent that blue and red LED is the most suitable spectra for the healthy development of plants. The findings have confirmed that the combination of blue + red LED can potentially be used for enhancing growth yields of medicinally and commercially important plants.


Assuntos
Ficus/efeitos da radiação , Luz , Desenvolvimento Vegetal/efeitos da radiação , Ficus/crescimento & desenvolvimento , Ficus/fisiologia , Brotos de Planta/crescimento & desenvolvimento
16.
PLoS One ; 16(12): e0259585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882694

RESUMO

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Assuntos
Helianthus/crescimento & desenvolvimento , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Peroxidase/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
17.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884626

RESUMO

Root-derived mobile signals play critical roles in coordinating a shoot's response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Raízes de Plantas/genética , Brotos de Planta/genética , RNA de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , /crescimento & desenvolvimento
18.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885740

RESUMO

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Flavonoides/biossíntese , Glicosídeos/biossíntese , Brotos de Planta/crescimento & desenvolvimento , Camellia sinensis/efeitos da radiação , Flavonoides/química , Flavonoides/efeitos da radiação , Glicosídeos/efeitos da radiação , Quempferóis/química , Brotos de Planta/efeitos da radiação , Análise de Componente Principal , Luz Solar , Raios Ultravioleta
19.
Sci Rep ; 11(1): 24408, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949763

RESUMO

Some forest trees have been polyploidized to improve their traits and to supply new germplasms for breeding programs. As trees have a long juvenile stage, the early characterization of the chromosome set doubling effects is crucial for previous selection. Thus, we aimed to characterize the chemical variability of essential oils from diploid and autotetraploid germplasms (autotetraploid A and B) of Eucalyptus benthamii, as well as to evaluate their larvicidal and allelopathic effects. Autotetraploid A showed a higher essential oil yield than diploid and autotetraploid B, which did not differ quantitatively. Aromadendrene, viridiflorol and α-pinene were the major compounds in the diploid essential oil. In contrast, compounds were present in autotetraploids, such as 1,8-cineole, limonene, α-terpineol, and α-terpinyl-acetate. Essential oils from the diploid at 50-200 ppm were twice as larvicidal than those from autotetraploids against Aedes aegypti larvae. Considering the phytotoxicity bioassays using Lactuca sativa, essential oils from both ploidy levels affected root growth. Moreover, the essential oils inhibited shoot growth at all concentrations tested (187.5; 375; 750; 1500; and 3000 ppm). Autotetraploid A and B had the same effect on shoot growth as glyphosate. The essential oils had no cytogenotoxic effect on root meristematic cells of L. sativa, whereas phytotoxic potential was identified mainly in shoot growth. This work demonstrated a dramatic change in secondary metabolism (terpene composition) related to an increase in the ploidy level in Eucalyptus germplasms. In addition, we report the novelty of the chemical composition of essential oils among germplasms and their potential use as larvicidal and post-emergence weed control agents.


Assuntos
Óleo de Eucalipto/química , Óleo de Eucalipto/farmacologia , Eucalyptus/química , Eucalyptus/genética , Herbicidas , Inseticidas , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tetraploidia , Aedes/efeitos dos fármacos , Alelopatia/efeitos dos fármacos , Animais , Bioensaio , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , /crescimento & desenvolvimento , Melhoramento Vegetal , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento
20.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769323

RESUMO

Metalliferous soils are characterized by a high content of metal compounds that can hamper plant growth. The pseudometallophyte Noccaea caerulescens is able to grow on metalliferous substrates by implementing both tolerance and accumulation of usually toxic metal ions. Expression of particular transmembrane transporter proteins (e.g., members of the ZIP and NRAMP families) leads to metal tolerance and accumulation, and its comparison between hyperaccumulator N. caerulescens with non-accumulator relatives Arabidopsis thaliana and Thlaspi arvense has deepened our knowledge on mechanisms adopted by plants to survive in metalliferous soils. In this work, two transporters, ZNT1 and NRAMP4, expressed in a serpentinic population of N. caerulescens identified on the Monte Prinzera (Italy) are considered, and their expression has been induced in yeast and in A. thaliana. In the latter, single transgenic lines were crossed to test the effect of the combined over-expression of the two transporters. An enhanced iron and manganese translocation towards the shoot was induced by overexpression of NcZNT1. The combined overexpression of NcZNT1 and NcNRAMP4 did perturb the metal accumulation in plants.


Assuntos
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Níquel/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Thlaspi/crescimento & desenvolvimento , Thlaspi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...